2010/01/05

Has Kepler Discovered a New Class of Celestial Object?

The strange objects orbiting the two stars could be mangled white dwarfs... but the jury is still out (NASA)

The first results from NASA’s Kepler exoplanet hunter are in and a perplexing early result has been announced. Yes, the space telescope is working fine, and no, it hasn’t spotted an alien homeworld (yet), but the Kepler team have uncovered something pretty cool.

Kepler may have discovered a new class of celestial object (possibly).

But before we start scratching our heads in confusion or popping the champagne corks in celebration, let’s try to work out what Kepler has observed.

Kepler is currently monitoring 100,000 stars in an effort to seek out extra-solar planets (or “exoplanets”) orbiting these stars. Although Kepler was only launched in March 2009 and early doubts about the observatory’s capabilities caused some low-level concern, Kepler appears to be functioning well and mission controllers are already reporting early results.

Five new exoplanet discoveries by Kepler were announced at the American Astronomical Society (AAS) meeting in Washington D.C. on January 4th, and all seem to have very strange characteristics. Fortunately Discovery News blogger Ray Villard was on the scene at the AAS to hear what the Kepler team had to announce:

In sifting through the Kepler data taken so far, postdoctoral student Jason Rowe found a very curious light signature. When an object passed behind its central star, the light from the system dropped significantly. This means the object — called KOI 74b — must be glowing fiercely with its own light that was blocked out when the object was eclipsed.

Hold up, the light dimmed when the exoplanet passed behind its parent star? Something’s not right here. Kepler detects exoplanets when the worlds pass in front of their parent stars, thereby dimming the starlight, not vice versa!

Actually, this is exactly what’s happened. The “exoplanets” orbiting two otherwise ordinary stars appear to be brighter — and hotter — than their host stars. It’s as if the roles of the stars and the exoplanets have been reversed; the stars are dimming the exoplanetary light as the exoplanet passes behind the star.

Needless to say, there is currently no stellar model that predicts this kind of behavior from extra-solar planetary systems.

This means the object — called KOI 74b — must be glowing fiercely with its own light that was blocked out when the object was eclipsed [...] It is seething at 70,000 degrees Fahrenheit while the parent star is 17,000 degrees Fahrenheit. The strange object can’t be a star because the transit data show that it is no bigger than Jupiter.Ray Villard, Discovery News.

One theory is that KOI 74b (and the other strange object, KOI 81b) could be a white dwarf star that migrated close to its stellar partner. Through binary interactions, the white dwarf was stripped of some of its mass, causing it to puff up and appear like a gas giant exoplanet. That would certainly go to some way of explaining why these two “exoplanets” are so hot.

Of course, the other option is that Kepler has made a groundbreaking discovery and identified a whole new class of celestial object… but I suspect there are other, more mundane reasons for these observations.

I suppose we’ll just have to wait and see until followup observations are made…

Source: Discovery News

Posted via web from Traction Lobe